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Background 

• Switchgrass (Panicum virgatum) is a perennial C4 grass native to the 
central north American prairie. 

• Traditionally used as a pasture and forage, recently has received 
attention as a promising biofuel crop. 

• Management as a biofuel crop differs from forage management. 

• Reported yields under biofuel management range from 5.5 to 25 t ha-1. 

• Variable and conflicting response to N fertilization. 

• Very little information about switchgrass production in irrigated regions 
and in Mediterranean climates. 

 



• Two-harvest system (July and October). 

• Irrigation used throughout the entire growing season. 

• Above ground (AG) biomass yields up to 30 t ha-1 yr-1. 

• Lowland ecotype varieties indicated to the Central Valley. 

Switchgrass in California 
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Problems 
• 1st Harvest (July): 
– 70% of  the annual biomass. 
– High N removal (green plants). 

• 2nd harvest (October): 

– 30% of the annual biomass. 

– Requires additional inputs (irrigation, fertilization, field operations). 

 

Switchgrass in California 

• Switchgrass translocates N to belowground  (BG) biomass in response to 
drought and during senescence. However, it has not been quantified. 



Single-harvest (Oct) system: 

• High biomass production. 

• Determinate growth, no biomass accumulation after flowering: 
– Irrigation could be cut off, leading to water savings. 

• Uses the internal mechanism of N conservancy within the plant: 
– N translocation from AG to BG biomass during senescence. 

– Reduced N removal by harvest. 

• Fewer field operations, lower energy input. 

 

A single-harvest system would require lower-inputs than two-

harvest systems. 

Rationale 



Low and High Input System 

• Low-input system: 1 harvest (Oct), irrigated until flowering (July). 

• High-input system: 2 harvests (July and Oct), irrigated during the 
entire growing season. 
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Hypothesis and Objectives 

Hypothesis Low-input High-input 
Biomass yield High Higher 
Irrigation use Low High 
IUE (biomass/irrigation) High Low 
N translocation during senescence Yes No 
N removal Low High 
NUE (biomass/N removed) High Low 
N in below ground biomass High Low 

Objectives: 

a. Determine biomass production and irrigation use. 

b. Determine yield response to N fertilization and NUE. 

c. Determine fertilizer N recovery and losses in the plant-soil system with the 
use of 15N enriched fertilizer. 

d. Quantify N removal, N translocation during senescence to BG biomass and N 
carry-over to subsequent years through the use of 15N enriched microplots. 

  

 



Materials and Methods 

• Location: Davis, CA. 

• Split-plot RCBD, 4 replications. 

• Lowland ecotype variety ‘Alamo’. 

• Main treatments: low and high input system. 

• Sub-treatments: 0, 100 and 200 kg N ha-1 yr-1 surface applied in 
spring as ammonium sulfate. 

• Irrigation according to evapotranspiration, 180 mm of water 
applied at each irrigation event. 

• Sampling and measurements: 

– Above ground biomass, N concentration and water applied. 

 

 



• 15N microplots :  

– Only in the 100 kg N ha-1 yr-1. 

– Single application of 10% 15N enriched ammonium sulfate in 
spring of the first year. Fertilizer recovery measured at the end 
of the 1st, 2nd and 3rd growing seasons in plant and soil. 

 

• 15N fertilizer recovery: 

– Above ground and residues biomass. 

– Crown and roots biomass and soil, down to 3 m. 

Materials and Methods 



1st Year Results 
Biomass and Yield Response to N 
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1st Year Results 
Crop N Removal 
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Key Points - % Change in High Input System 

Summary   % Change 
Biomass t ha-1 + 28 
Water use mm yr-1 + 53 
N removal kg ha-1 + 143 
Fertilizer N removal 

% applied 
+ 133 

Fertilizer N in below ground biomass -52 
Fertilizer N in soil -33 
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