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Pyrolysis is Cheapest Biomass Conversion Technology

= Pyrolysis is the cheapest technology to convert biomass
into a liquid fuel.

= Several companies are producing pyrolysis oils on
commercial scale today.

= Jowa State (Robert Brown) and Conoco Phillips study
concluded minimum cost of biofuel:
« Hydrolysis $5-6/GGE > Gasification $4-5/GGE > Pyrolysis $2-3/GGE
(GGE = gallons of gasoline energy equilvalence.)

« (Study assumption: nth plant economics; 10% IRR; 2000 tons/day
feedstock; Feedstock cost $75/ton; 100% equity financing.)

= Challenges with pyrolysis technology:
« Controlling the chemistry
« Low quality fuel
- Upgrading of pyrolysis vapors 4 -
« Catalysts and reaction engineering Pyrolysis Oils
« Hydrogen requirements for upgrading (Hydrogen is more expensive
than actual pyrolysis oil)

M. M. Wright, D. E. Daugaard, J. A. Satrio, R. C. Brown, Fuel 89 2010 S2-S10.
R.H. Venderbosch, W. Prins (2010) Fast pyrolysis technology development. In: Biofuels, Bioproducts
and Biorefining (p 178-208).



http://www.btgworld.com/uploads/documents/Fast Pyrolysis Development_Venderbosch et al. 2010.pdf
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Biomass Conversion Technologies are

Capital Intensive

= Need to develop conversion technologies with low capital costs

= Decisions about cost are made very early in technology
development in conceptual design stage

= Conceptual design should be used to guide R&D

Accumulated Cost
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PRODUCTION AND CHARACTERIZATION OF
PYROLYSIS OILS
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UMass Pyrolysis Pilot Plant 4.9 Gallons/day
Designed by: Phil Badger; Renewable Oil International
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Bio-o0il: Characterization

C:47.0% Oak Wood Bio-oil
. (0)

I;'. if g:)/ Viscosity: ~150 cP|
- &4.070 e—

‘ Elemental Viscometry ‘

Composition

Non-Combustibles Solubility
Ash: 0.03 wt% Acidity Water: 62%
Methanol: 98%
M A N pH: 2.75 Toluene: 14%
- - ‘ Diesel Fuel: 4%

S. Czernik, A. V. Bridgwater, Overview of applications of biomass fast
pyrolysis oil. Energy Fuels 18, 590-598 (2004).
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Catalytic Fast Pyrolysis Single Step Process to
make Petrochemicals from Solid Biomass

= Solid biomass converted into
petrochemicals in a single
reactor at short residence
times:

« Petrochemical that fits into
existing infrastructure.

- Inexpensive, recyclable zeolite
catalysts.

- Challenge is controlling
chemistry.

« Optimize reactor and catalytic
chemistry to achieve high
aromatic yields.

" ‘ g/ GASOUNE co, CO WATER |l Carlson, T_.R.;Vispute,T:P.;and_Huper,G.W.;QreenGasoIine

by Catalytic Fast Pyrolysis of Solid Biomass-derived
Compounds, ChemSusChem, 1, 397-400 (2008).

J. Scahill and J. Diebold, Research in Thermochemical
Biomass Conversion, 1988, 40, 927-940.
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Block Flow Diagram for Catalytic Fast Pyrolysis
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Torren R. Carlson, Yu-Ting Cheng, Jungho Jae and George W. Huber,
Production of Green Aromatics and Olefins by Catalytic Fast Pyrolysis of
Wood Sawdust, Energy and Environmental Science (2011) 4 145-161.
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Variety of Scientific Tools to Optimize CFP
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Wide Variety of Experimental Equipment used to Optimize CFP
Technology

Quariz wool
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Fall 2006 TGA-MS Fixed bed reactor (mg)
(Mg) December 2008
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fluidized bed 2"¢ generation Process Development

December 2008 fluidized bed Unit (PDU)
March 2010 April 2011
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Potential to Make Renewable Football Jersey

Aromatics can be added to
conventional petrochemical
infrastructure to make
fungible products

Biomass Catalytic Fast Pyrolysis Aromatics
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Wide Range of Downstream Customers Can
Use Green BTX in Existing Process Equipment
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CFP involves reactions in solid biomass, gas phase and
inside catalyst

Coke

[
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Pyrolysis H acid catalyzed .
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Dehydrated L Hydrocarbon romatics
cellulose anhydro sugars Products decarboxylation, Pool

decarbonilation

Desired Chemistry:
Pyrolysis (homogeneous) N\
Dehydration (heterogeneous & homogeneous) Oefins
Oligomerization & decarbonylation (heterogeneous)

Undesired Chemistry:
Homogeneous and Heterogeneous coke formation
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Cellulose Pyrolysis Involves Series and Parallel Reactions

i Char(C) + Gas(G)

Cellulose (B) “_, Active cellulose(A) p » Anhydro-sugars (D)

*At low temperatures

ki
(less than 300°C) 109 A = wymonl H. (kImol
cellulose forms coke. (Ainsec)| = KI/moD) Huyp (kd/mo

*Coke formation is alow 29 258 15
activation energy
process and exothermic.

_ K, 5.7 103 -170
Gases formed with coke

include CO, and H,0.
_ Ky 14.8 199 120
*High rates of heat
transfer are needed to
avoid coke formation.

Joungmo Cho, Jeffrey M. Davis, and George W. Huber; The Intrinsic Kinetics and Heats of Reactions for Cellulose Pyrolysis and

Char Formation, ChemSusChem (2010) 3 1162-1165.
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Aromatic Yield Increases with Heating Rate
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Reaction Conditions: Temperature 600°C; ZSM-5;

Feed: Glucose; Catalyst to Feed Ratio 19
CsOgH,, — 12/22 C,Hg (63 % Yield) + 48/22 CO (36 % Yield) + 84/22 H,O

Carlson, T.R.; Vispute, T.P.; and Huber, G.W.; Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass-derived
Compounds, ChemSusChem, 1, 397-400 (2008).




Catalyst Design is Crucial to Achieve High Aromatic
Yields
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Carlson, T.R.; Vispute, T.P.; and Huber, G.W.; Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass-derived

Compounds, ChemSusChem, 1, 397-400 (2008). 17
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Pore size of feed, product and catalysts are critical for
catalyst design
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Jungho Jae, Geoffrey A. Tompsett, Andrew J. Foster, Karl D. Hammond , Scott M. Auerbach, W. Curtis Conner, Raul F. Lobo, and
George W. Huber, The Shape Selectivity of Zeolite Catalysts for Biomass Conversion, (in press).



Aromatic Yield is a Function of Zeolite
Pore Size and Internal Pore Volume

40 Internal Pore
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CFP of glucose at 600°C.
Yield is a function of zeolite pore size.

Jungho Jae, Geoffrey A. Tompsett, Andrew J. Foster, Karl D. Hammond , Scott M. Auerbach, W. Curtis Conner, Raul F. Lobo, and
George W. Huber, The Shape Selectivity of Zeolite Catalysts for Biomass Conversion, J. Catalysis (in-press).
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Model Compounds Help Understand the Zeolite Chemistry
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Y. Cheng and G.W. Huber, Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A
Model Biomass Conversion Reaction; ACS Catalysis (2011), in-press.
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Bio-oils Produced by Fast Pyrolysis
of Mixed Hard Woods

Bio-oil mixture of
oxygenated products
analyzed by GCMS,
GPC, HPLC, Karl
Fisher

Bio-oil Analysis (wt%o)

Hydroxyacetone_ Guaiacol Levoglucosan
2% 2%

Hydroxyacet
4%

10 Misc.
Oxygenates
4%

Pyrolytic Lignin

22% Unidentified

Products
7%

Commercial Yields: 70 wt% Bio-oils

Aromatics Produced by CFP of
Pine Wood in PDU
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Tools: Optimization of Pyrolysis Technologies
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Yields from Catalytic Fast Pyrolysis
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Conclusions

a All products made from petroleum today can be made from biomass

a Clear need to develop new processes for sustainable production of

liquid fuels and chemicals

Catalytic fast pyrolysis allows the direct production of aromatics and
olefins from solid biomass in a single catalytic step

High yields of petrochemicals are possible in a single catalytic
reactor

Adjust aromatic yields by tuning catalytic properties, adjusting the
pyrolysis chemistry and reactor design

Focusing on understanding the basic chemistry and catalysis can
help us design improved processes for biomass conversion
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Bio-o0il is an emulsion

Bio-oil before filtration Bio-oil after microfiltration

Control Valve Microfiltration Membrane
Pressure &

Temperature
Indicators

Retentate Stream Permeate Stream Gear

(Char Removed) Pump

A. Javaid, T. Ryan, G. Berg, X. Pan, T. Vispute, S. Bhatia, G. W. Huber, and D. M. Ford; Removal of Char
Particles from Bio-oils by Microfiltration, Journal of Membrane Science (2010), 363(1-2), 120-127.
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Bio-oil undergoes phase separation when
heated

*Bio-oil phase separates on
accelerated aging (heated to 90°C)
A thick tarry phase is formed at the
bottom and a less viscous top phase
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Pyrolysis Conclusions

Pyrolysis oil is cheapest liquid fuel made from
biomass

Pyrolysis oils is a mixture of products including:
water, organic acids, hydroxyacetone,
carbohydrates, and pyrolytic lignin

Bio-oil phase separates with time

Needs to be upgraded which requires large
amounts of hydrogen (expensive)



