Engineering of carboxylation in S. cerevisiae:

PEPCK and malic enzyme
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1,4-dicarboxylic acids and Saccharomyces cerevisiae

Versatile platform chemicals

- Huge potential market
Successful microbial production
requires efficient, robust hosts

malate

fumarate

succinate

- Ultimate goal: high-yield production of free acids
- Very good tolerance to acidic conditions
- GRAS status for several applications

- Wild-type strains produce only traces of C, acids



Rerouting metabolism for malate production
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Rerouting metabolism for malate production
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An ethanol-negative, pyruvate producing yeast platform
C,-independent, glucose-tolerant pdci,5,6 strain of S. cerevisiae
obtained by evolutionary engineering ("TAM")
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Rerouting metabolism for malate production
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Rerouting metabolism for malate production
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Rerouting metabolism for malate production
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Rerouting metabolism for malate production

/2 Glucose Overexpressed genes:

. pyruvate carboxylase

. relocated malate dehydrogenase
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Rerouting metabolism for malate production
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Rerouting metabolism for malate production
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Transfer to fermenters and (some) optimization
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Transfer to fermenters and (some) optimization
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Air with 3% O, and 15% CO,, pH 6.8 & 10 mM CaCl,

Conversion of 100 £ 1 g I'1 glucose to 36 £ 1 g I'1 malate
(Ysp of 0.48 + 0.01 mol mol1)
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Alternative C3—-C4 carboxylating reactions

12 Glucose
l + NADH

PEP

l + ATP

Pyruvate

Colgt

Oxaloacetate

l - NADH

Malate

ATP neutral

| ]
Rintze Zelle et a/. 2010
Appl. Environ. Microbiol. 76:5383 TU Delft



Alternative C3—-C4 carboxylating reactions

PEP-carboxykinase
(Pckl in S. cerevisiae)
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Phospho-enol-pyruvate carboxykinase (PEPCK)
PEP + CO, + ADP — oxaloacetate + ATP

S. cerevisiae Pckl.:

72 Glucose e decarboxylating role is essential in
l gluconeogenesis (reaction marked
Phosphoenolpyruvate ‘irreversible’ in some models)
PEPCK i
Pyruvate e cannot replace pyruvate carboxylase
Py%cz Biosynthesis (Pycl, Pyc2) in anaplerotic C3—C4
3 carboxylation under standard conditions
/ OAA CIT

e strong glucose repression and glucose
catabolite inactivation
Biosynthesis
e microorganisms that use PEPCK for
carboxylation grow at high pCO,
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co,

air

A. succinogenes PEPCK cannot complement an
S. cerevisiae pyc1,24 mutant

PEPCK activity in cell extracts: ca. 0.4 pmol min-! (mg protein)!

aspartate

Strains
1 CEN.PK 113-7D (reference)
2 IMY002 (Pyc, AsPEPCK)

Rintze Zelle et al. 2010
Appl. Environ. Microbiol. 76:5383



Adaptive evolution of pycl1, 24 strain expressing
A. succinogenes PCK gene

v - Precultivation in CO,-sparged chemostats with
My aspartate, switch to medium without aspartate
.-"E"-._u .
Ay - Before complete washout stop glucose feed,
!fr continue as batch culture

- CO,-dependent growth observed after several
days of incubation (2 independent experiments)

- Single-cell lines isolated and characterized
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CO,-dependent complementation of an evolved
S. cerevisiae pycl,2A strain by A. succinogenes PEPCK

aspartate Strains
1 CEN.PK 113-7D

2 IMY002 (Pyc, AsPEPCK)
3 IMY050 (Pyc, AsPEPCK, evolved)
4 IMY051 (Pyc, AsPEPCK, evolved)

Co,

air

Rintze Zelle et al. 2010
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A hunch (very genomics...)

Y% Glucose
\ 4
Phosphoenolpyruvate  Ethanol
) A » Hypothesis:
PEPCK | High pyruvate kinase activities
Pyruvate —3 Acetaldehyde compete with PEPCK for pyruvate
PVCXCZ Amino acids
Enzyme activity
_ (umol-min-t-mg protein-?)
Strain
PEPCK | Pyruvate kinase
IMYO002
00 0.4+0.1 8.5+£0.6
(non-evolved)
Amino acids
IMY050 0.9+0.2 41+04
(evolved #1)
IMY051 0.7+0.3 51+£0.4
(evolved #2)
Rintze Zelle et al. 2010 ,‘
TUDelft
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PYK1 point mutations in two independent evolved strains
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A. succinogenes PEPCK complements non-evolved
pyci,24 mutants carrying pykl1 point mutations

ammonia

aspartate

Strains

1 CEN.PK 113-7D

2 IMY002 (Pyc, AsPEPCK)

3 IMY050 (Pyc, AsPEPCK, evolved)
4 IMY051 (Pyc, AsPEPCK, evolved)

7 IMY014 (Pyc, ASPEPCK, G436A)
8 IMY015 (Pyc, ASPEPCK, G1006T)



PEPCK as C3—-5C4 carboxylating enzyme in S. cerevisiae

Carboxylating function requires high CO, and increased
intracellular PEP concentrations (inferred from pyruvate kinase expp)

Evolved strains grow anaerobically at 0.14 = 0.01 h't (wild type: 0.30 h'1)
Estimated carboxylating flux (MFA): 0.3 mmol g1 h-!

Malate production in pyruvate-carboxylase-based strain: 2 mmol g1 h-1

) (,{v _4( ‘

~~~~~~

Rintze Zelle et a/. 2010
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Alternative C3—-C4 carboxylating reactions
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PEP-carboxykinase
(Pckl in S. cerevisiae)
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Malic enzyme

(Mael in 5. cerevisiae)

/2 Glucose
l + NADH

PEP

l + ATP

Pyruvate
HCO;5

@ - NADH

v

Malate

Rintze Zelle et al. 2010
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Malic enzyme
Pyruvate + NAD(P)H + H* + HCO;" —» malate + NAD(P)*

S. cerevisiae Mael:
1 Glucose

l e decarboxyilating role implicated in
Phosphoenolpyruvate mitochondrial NADPH, pyruvate production
Pyk : \- g
g (reaction marked ‘irreversible’ in some models)
Pyruvate

ME PV%CZ Biosynthesis ¢ cannot replace pyruvate carboxylase
° (Pyc1, Pyc2) in anaplerotic C3—~C4
/ OAA CIT carboxylation under standard conditions

¢ located in mitochondrial matrix
Biosynthesis

e dual cofactor specificity (NAD/NADP)

. . s
Rintze Zelle et al. submitted
Appl. Environ. Microbiol. I U Delft



Investigating a possible carboxylating role of
E. coli malic enzyme (sfcA) in S. cerevisiae

e pyruvate carboxylase-negative mutant (pyci,24)

e deletion in PDC2 gene (regulator of pyruvate decarboxylase
expression, leads to increased pyruvate levels)

e growth under CO, atmosphere

N source Viali .
. alic enzyme activity
ammonia _ (umol-min-t-mg protein-t)
Strain
NAD NADP
CEN.PK113-7D
0.04 £ 0.00 0.03+0.00
(reference)
IMYO016
N source 1.0+0.1 0.03 +0.01
aspartate (pyclA pyc2A pdc2A sfcAt)
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Adaptive evolution of pyci1, 24 pdc2A strain expressing
E. coli sfcA (malic enzyme) gene

- Precultivation in CO,-sparged chemostats with
aspartate, switch to medium without aspartate

- Before complete washout stop glucose feed,
continue as batch culture

- CO,-dependent growth observed after ca. one week

- After several sequential batch cultures, single-cell
line isolated

Evolved strain grows anaerobically at 0.06 + 0.01 h'l
(wild type: 0.30 h'1)
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Plasmid recovery and retransformation:
mutation on sfcA4 plasmid essential for growth of evolved strain

E=avmmmEa —» Single G1006A (Asp336Gly) point mutation in sfzA....

....with dramatic impact on cofactor specificity

Allele

Malic enzyme kinetic parameters
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Rintze Zelle et a/. 2010
Appl. Environ. Microbiol. 76:5383
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Conclusions

Product export is crucial in engineering S. cerevisiae for
C,-dicarboxylic acid production

Carbon dioxide concentration is an essential parameter for product
yield and titers

In vivo carboxylatin fg activity of PEPCK & malic enzyme requires
optimization of thermodynamic driving force:

e high CO, concentration
e elevated concentration of PEP (PEPCK) or pyruvate (ME)
e use of NADPH as redox cofactor (ME)

Metabolic engineering strategies should not only incorporate pathway
stochiometry but also kinetics and thermodynamics

PEP-carboxykinase and malic enzyme can now be implemented in S.
cerevisiae metabolic engineering strategies

]
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http://www.birdengineering.nl/home.htm

BIOEN - BE-Basic Joint Call

Themes :

Synthetic Biology for biofuels and bio-based
chemicals (industrial microbiology,
metabolic engineering, advanced
bioprocessing, etc)

Sustainability (land use changes, socio-
economic impacts, measuring tools, etc)

Event Date

Call announcement August 15, 2011
Closing date for submissions October 13, 2011
Notification of successful proposals from April 16, 2012

http://www.fapesp.br/en/6510

chamada-fapesp-be-basic@fapesp.br 44
supportoffice@be-basic.orq. | :E B e
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Rerouting metabolism for malate production

0 TCA cycle n Glyoxylate route (cyclic) )
Yspmax 1 mol mol-l YSpmaX 1 mol mol-l Yleld
c2 c2
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