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1,4-dicarboxylic acids and Saccharomyces cerevisiae 

Versatile platform chemicals 
 
Huge potential market 
Successful microbial production  
requires efficient, robust hosts 

- Ultimate goal: high-yield production of free acids 
- Very good tolerance to acidic conditions 
- GRAS status for several applications 
 
 Wild-type strains produce only traces of C4 acids 



Pyruvate 

Oxaloacetate 

Malic acid 

Medium 

½ Glucose 

½ Glucose 
+ NADH 
+ ATP 

- NADH 

Hxt 

Cytosol 

HCO3
- 

- ATP 

Ethanol 

Acetaldehyde 

Ethanol 

Rerouting metabolism for malate production 



Pyruvate 

Oxaloacetate 

Malic acid 

Medium 

½ Glucose 

½ Glucose 
+ NADH 
+ ATP 

- NADH 

Hxt 

Cytosol 

HCO3
- 

- ATP 

Ethanol 

Acetaldehyde 

Ethanol 

Rerouting metabolism for malate production 



0 

20 

40 

60 

80 

100 

120 

140 

0 20 40 60 80 100 

Time (h) 

P
y
ru

v
a

te
, 

g
lu

c
o

s
e

 (
g

.l
-1

) 

OD660 

Glucose 

Pyruvate 

An ethanol-negative, pyruvate producing yeast platform 
C2-independent, glucose-tolerant pdc1,5,6 strain of S. cerevisiae  

obtained by evolutionary engineering (“TAM”) 

[pyruvate] = 135 g.l-1 
Ypyr, gluc = 0.55 g.g-1 
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Transfer to fermenters and (some) optimization 



Air with 3% O2 and 15% CO2, pH 6.8 & 10 mM CaCl2 
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Conversion of 100 ± 1 g l-1 glucose to 36 ± 1 g l-1 malate 
(YSP of 0.48 ± 0.01 mol mol-1) 

glucose 

malate 

glycerol 

succinate 

pyruvate 

Transfer to fermenters and (some) optimization 
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Alternative C3C4 carboxylating reactions 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  
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PEP-carboxykinase 
(Pck1 in S. cerevisiae) 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  
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Phospho-enol-pyruvate carboxykinase (PEPCK) 
PEP + CO2 + ADP  oxaloacetate + ATP 

S. cerevisiae Pck1: 
  
• decarboxylating role is essential in  
  gluconeogenesis (reaction marked 
  „irreversible‟ in some models) 
 
• cannot replace pyruvate carboxylase  
  (Pyc1, Pyc2) in anaplerotic C3C4  
  carboxylation under standard conditions 
 
• strong glucose repression and glucose 
  catabolite inactivation 
 
• microorganisms that use PEPCK for  
  carboxylation grow at high pCO2 

 
 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



A.succinogenes PEPCK cannot complement an 
S. cerevisiae pyc1,2Δ mutant 

Strains 
1 CEN.PK 113-7D (reference) 
2 IMY002 (Pyc-, AsPEPCK) 

PEPCK activity in cell extracts: ca. 0.4 µmol min-1 (mg protein)-1 

CO2 

air 

aspartate ammonia 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



Adaptive evolution of pyc1,2Δ strain expressing  
A. succinogenes PCK gene  

- Precultivation in CO2-sparged chemostats with 
  aspartate, switch to medium without aspartate 
 
- Before complete washout stop glucose feed, 
  continue as batch culture 
 
- CO2-dependent growth observed after several 
  days of incubation (2 independent experiments) 
 
- Single-cell lines isolated and characterized 
 

 
 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



Evolution (3 & 4) 
Strains 
1 CEN.PK 113-7D 
2 IMY002 (Pyc-, AsPEPCK) 
3 IMY050 (Pyc-, AsPEPCK, evolved) 
4 IMY051 (Pyc-, AsPEPCK, evolved) 
5 IMY012 (Pyc-, ScPEPCK, evolved) 
6 IMY013 (Pyc-, ScPEPCK, evolved) 
7 IMY014 (Pyc-, AsPEPCK, G436A) 
8 IMY015 (Pyc-, AsPEPCK, 

G1006T) 
 
 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  
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CO2-dependent complementation of an evolved 
S. cerevisiae pyc1,2Δ strain by A. succinogenes PEPCK 
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A hunch (very genomics…) 
  

Hypothesis: 
High pyruvate kinase activities 
compete with PEPCK for pyruvate 

Strain 

Enzyme activity 

(µmol∙min-1∙mg protein-1) 

PEPCK Pyruvate kinase 

IMY002 

(non-evolved) 
0.4 ± 0.1 8.5 ± 0.6 

IMY050 

(evolved #1) 
0.9 ± 0.2 4.1 ± 0.4  

IMY051 

(evolved #2) 
0.7 ± 0.3  5.1 ± 0.4 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



PYK1 point mutations in two independent evolved strains 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



Mutation integration (7 & 8) 
Strains 
1 CEN.PK 113-7D 
2 IMY002 (Pyc-, AsPEPCK) 
3 IMY050 (Pyc-, AsPEPCK, evolved) 
4 IMY051 (Pyc-, AsPEPCK, evolved) 
5 IMY012 (Pyc-, ScPEPCK, evolved) 
6 IMY013 (Pyc-, ScPEPCK, evolved) 
7 IMY014 (Pyc-, AsPEPCK, G436A) 
8 IMY015 (Pyc-, AsPEPCK, G1006T) 
 
 

A. succinogenes PEPCK complements non-evolved 
pyc1,2Δ mutants carrying pyk1 point mutations 

CO2 

air 

aspartate ammonia 



PEPCK as C3C4 carboxylating enzyme in S. cerevisiae  

Carboxylating function requires high CO2 and increased  
intracellular PEP concentrations (inferred from pyruvate kinase expp) 
 
Evolved strains grow anaerobically at 0.14  0.01 h-1 (wild type: 0.30 h-1) 
 
Estimated carboxylating flux (MFA): 0.3 mmol g-1 h-1 

Malate production in pyruvate-carboxylase-based strain: 2 mmol g-1 h-1 

 
 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  
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Alternative C3C4 carboxylating reactions 

PEP-carboxykinase 
(Pck1 in S. cerevisiae) 

Malic enzyme 
(Mae1 in S. cerevisiae) 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  
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Malic enzyme 
Pyruvate + NAD(P)H + H+ + HCO3

-  malate + NAD(P)+ 

S. cerevisiae Mae1: 
 
• decarboxylating role implicated in  
  mitochondrial NADPH, pyruvate production 
  (reaction marked „irreversible‟ in some models) 
 
• cannot replace pyruvate carboxylase  
  (Pyc1, Pyc2) in anaplerotic C3C4  
  carboxylation under standard conditions 
 
• located in mitochondrial matrix 
 

• dual cofactor specificity (NAD/NADP) 

 
 

Rintze Zelle et al. submitted 
Appl. Environ. Microbiol. 



Investigating a possible carboxylating role of  
E. coli malic enzyme (sfcA) in S. cerevisiae 

• pyruvate carboxylase-negative mutant (pyc1,2Δ) 
• deletion in PDC2 gene (regulator of pyruvate decarboxylase 
  expression, leads to increased pyruvate levels) 
• growth under CO2 atmosphere 

N source 
ammonia 

N source 
aspartate 

Strain 

Malic enzyme activity 

(µmol∙min-1∙mg protein-1) 

NAD NADP 

CEN.PK113-7D 

(reference) 
0.04 ± 0.00 0.03  0.00 

IMY016 

(pyc1Δ pyc2Δ pdc2Δ sfcA↑ ) 
1.0 ± 0.1 0.03 ± 0.01  

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



Adaptive evolution of pyc1,2Δ pdc2Δ strain expressing  
E. coli sfcA (malic enzyme) gene  

- Precultivation in CO2-sparged chemostats with 
  aspartate, switch to medium without aspartate 
 
- Before complete washout stop glucose feed, 
  continue as batch culture 
 
- CO2-dependent growth observed after ca. one week 
   
- After several sequential batch cultures, single-cell 
  line isolated 
 

 
 

CO2 

air 

Evolved strain grows anaerobically at 0.06  0.01 h-1  
(wild type: 0.30 h-1) 



Plasmid recovery and retransformation: 
mutation on sfcA plasmid essential for growth of evolved strain  

Single G1006A (Asp336Gly) point mutation in sfcA…. 

Allele 

 

Malic enzyme kinetic parameters 

NAD+ NADP+ 

Vmax Km (mM) Vmax Km (mM) 

sfcA (reference) 

 
1.8 0.14 0.6 9 

sfcA G1006A 1.0 4 0.7 0.2 

….with dramatic impact on cofactor specificity 

Rintze Zelle et al. 2010 
Appl. Environ. Microbiol. 76:5383  



Product export is crucial in engineering S. cerevisiae for 
C4-dicarboxylic acid production 
 
Carbon dioxide concentration is an essential parameter for product 

yield and titers 
 
In vivo carboxylating activity of PEPCK & malic enzyme requires 

optimization of thermodynamic driving force: 
 
• high CO2 concentration 

 
• elevated concentration of PEP (PEPCK) or pyruvate (ME) 

 
• use of NADPH as redox cofactor (ME) 
 
Metabolic engineering strategies should not only incorporate pathway 

stochiometry but also kinetics and thermodynamics 
 
PEP-carboxykinase and malic enzyme can now be implemented in S. 

cerevisiae metabolic engineering strategies 
 
 
 
 
 
 

 
 
 
 
 

Conclusions 
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Yield 

• 0.42 mol malate per mol 
glucose 

 

Enzyme activities 

• Isocitrate lyase activity 
undetectable 

 

13C-NMR metabolic flux 
analysis 

X 
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Rerouting metabolism for malate production 


